Hereditary Vestibulocerebellar Syndromes

Melden Sie sich bitte hier kostenlos und unverbindlich an, um den Inhalt vollständig einzusehen und weitere Services von zu nutzen.

Zur Anmeldung

AutorIn: Joanna C Jen, Hafsa Mamsa, Amalia Hatcher, Jijun Wan

Department of Neurology David Geffen School of Medicine at The University of California, Los Angeles

1 Parker HL. Periodic ataxia. Collect Papers Mayo Clinic Mayo Found 1946; 38:642–5

2 Jen JC et al., Primary episodic ataxias: diagnosis, pathogenesis and treatment. Brain 2007; 130:2484–93

3 VanDyke et al., Hereditary myokymia and periodic ataxia. J Neurol Sci 1975; 25:109–18

4 Browne DL et al., Episodic ataxia/myokymia syndrome is associated with point mutations in the human potassium channel gene, KCNA1. Nat Genet 1994; 8:136–40

5 Wang H et al., Localization of Kv1.1 and Kv1.2, two K channel proteins, to synaptic terminals, somata, and dendrites in the mouse brain. J Neurosci 1994; 14:4588–99

6 Papazian DM et al., Cloning of genomic and complementary DNA from Shaker, a putative potassium channel gene from Drosophila. Science 1987; 237:749–53

7 Jiang Y et al., The principle of gating charge movement in a voltage-dependent K+ channel. Nature 2003; 423:42–8

8 Jiang Y et al., X-ray structure of a voltage-dependent K+ channel. Nature 2003; 423:33–41

9 Smart SL et al., Deletion of the K(V)1.1 potassium channel causes epilepsy in mice. Neuron 1998; 20:809–19

10 Herson PS et al., A mouse model of episodic ataxia type-1. Nat Neurosci 2003; 6:378–83

11 Ishida S et al., Kcna1-mutant rats dominantly display myokymia, neuromyotonia and spontaneous epileptic seizures. Brain Res 2012; 1435:154–66

12 Eunson LH et al., Clinical, genetic, and expression studies of mutations in the potassium channel gene KCNA1 reveal new phenotypic variability. Ann Neurol 2000; 48:647–56

13 Zuberi SM et al., A novel mutation in the human voltage-gated potassium channel gene (Kv1.1) associates with episodic ataxia type 1 and sometimes with partial epilepsy. Brain 1999; 122 ( Pt 5):817–25

14 Lee H et al., A novel mutation in KCNA1 causes episodic ataxia without myokymia. Hum Mutat 2004; 24:536

15 Shook SJ et al., Novel mutation in KCNA1 causes episodic ataxia with paroxysmal dyspnea. Muscle Nerve 2008; 37:399–402

16 Tan SV et al., Episodic ataxia type 1 without episodic ataxia: the diagnostic utility of nerve excitability studies in individuals with KCNA1 mutations. Dev Med Child Neurol 2013; 55:959–62

17 Graves TD et al Episodic ataxia type 1: clinical characterization, quality of life and genotype-phenotype correlation. Brain 2014; 137:1009–18

18 Jen J et al.,Clinical spectrum of episodic ataxia type 2. Neurology 2004; 62:17–22

19 Imbrici P et al., Late-onset episodic ataxia type 2 due to an in-frame insertion in CACNA1A. Neurology 2005; 65:944–6

20 Cuenca-Leon E et al., Late-onset episodic ataxia type 2 associated with a novel loss-of-function mutation in the CACNA1A gene. J Neurol Sci 2009; 280:10–4

21 Wiest G et al., Otolith function in cerebellar ataxia due to mutations in the calcium channel gene CACNA1A. Brain 2001; 124:2407–16

22 Baloh RW et al., Familial episodic ataxia: clinical heterogeneity in four families linked to chromosome 19p. Ann Neurol 1997; 41:8–16

23 Denier C et al., High prevalence of CACNA1A truncations and broader clinical spectrum in episodic ataxia type 2. Neurology 1999; 52:1816–21

24 Griggs RC et al., Hereditary paroxysmal ataxia: response to acetazolamide. Neurology 1978; 28:1259–64

25 Strupp M et al., A randomized trial of 4-aminopyridine in EA2 and related familial episodic ataxias. Neurology 2011; 77:269–75

26 Strupp M et al., Treatment of episodic ataxia type 2 with the potassium channel blocker 4-aminopyridine. Neurology 2004; 62:1623–5

27 Ophoff RA et al., Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 1996; 87:543–52

28 Mori Y et al., Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 1991; 350:398–402

29 Simms BA, Zamponi GW. Neuronal voltage-gated calcium channels: structure, function, and dysfunction. Neuron 2014; 82:24–45

30 Payandeh J et al., The crystal structure of a voltagegated sodium channel. Nature 2011; 475:353–8

31 Wan J,Carr et al., Nonconsensus intronic mutations cause episodic ataxia. Ann Neurol 2005; 57:131–5

32 Labrum RW et al., Large scale calcium channel gene rearrangements in episodic ataxia and hemiplegic migraine: implications for diagnostic testing. J Med Genet 2009; 46:786–91

33 Riant F et al., Identification of CACNA1A large deletions in four patients with episodic ataxia. Neurogenetics 2010; 11:101–6

34 Riant F et al., Large CACNA1A deletion in a family with episodic ataxia type 2. Arch Neurol 2008; 65:817–20

35 Wan J et al., Large Genomic Deletions in CACNA1A Cause Episodic Ataxia Type 2. Front Neurol 2011; 2:51

36 Ducros A et al., The clinical spectrum of familial hemiplegic migraine associated with mutations in a neuronal calcium channel. N Engl J Med 2001; 345:17–24

37 Zhuchenko O et al., Autosomal dominant cerebellar ataxia (SCA6) associated with small polyglutamine expansions in the alpha 1A-voltage-dependent calcium channel. Nat Genet 1997; 15:62–9

38 Jen J et al., A novel nonsense mutation in CACNA1A causes episodic ataxia and hemiplegia. Neurology 1999; 53:34–7

39 Geschwind DH et al., Spinocerebellar ataxia type 6. Frequency of the mutation and genotype-phenotype correlations. Neurology 1997; 49:1247–51

40 Jodice C et al., Episodic ataxia type 2 (EA2) and spinocerebellar ataxia type 6 (SCA6) due to CAG repeat expansion in the CACNA1A gene on chromosome 19p. Hum Mol Genet 1997; 6:1973–8

41 Wan J et al., CACNA1A mutations causing episodic and progressive ataxia alter channel trafficking and kinetics. Neurology 2005; 64:2090–7

42 Wappl E et al., Functional consequences of P/Q-type Ca2+ channel Cav2.1 missense mutations associated with episodic ataxia type 2 and progressive ataxia. J Biol Chem 2002; 277:6960–6

43 Page KM et al., N terminus is key to the dominant negative suppression of Ca(V)2 calcium channels: implications for episodic ataxia type 2. J Biol Chem 2010; 285:835–44

44 Page KM et al., Dominant-negative calcium channel suppression by truncated constructs involves a kinase implicated in the unfolded protein response. J Neurosci 2004; 24:5400–9

45 Jeng CJ et al., Dominant-negative effects of episodic ataxia type 2 mutations involve disruption of membrane trafficking of human P/Q-type Ca2+ channels. J Cell Physiol 2008; 214:422–33

46 Jouvenceau A et al., Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 2001; 358:801–7

47 Ishikawa K et al., Cytoplasmic and nuclear polyglutamine aggregates in SCA6 Purkinje cells. Neurology 2001; 56:1753–6

48 Ishikawa K et al., Clinical, neuropathological, and molecular study in two families with spinocerebellar ataxia type 6 (SCA6). J Neurol Neurosurg Psychiatry 1999; 67:86–9

49 Watase K et al., Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci U S A 2008; 105:11987–92

50 Hoebeek FE et al., Increased noise level of purkinje cell activities minimizes impact of their modulation during sensorimotor control. Neuron 2005; 45:953–65

51 Walter JT et al., Decreases in the precision of Purkinje cell pacemaking cause cerebellar dysfunction and ataxia. Nat Neurosci 2006; 9:389–97

52 Alvina K, Khodakhah K, KCa channels as therapeutic targets in episodic ataxia type-2. J Neurosci 2010; 30:7249–57

53 Mark MD et al., Delayed postnatal loss of P/Q-type calcium channels recapitulates the absence epilepsy, dyskinesia, and ataxia phenotypes of genomic Cacna1a mutations. J Neurosci 2011; 31:4311–26

54 Maejima T et al., Postnatal loss of P/Q-type channels confined to rhombic-lip-derived neurons alters synaptic transmission at the parallel fiber to purkinje cell synapse and replicates genomic Cacna1a mutation phenotype of ataxia and seizures in mice. J Neurosci 2013; 33:5162–74

55 Salvi J et al., RNAi silencing of P/Q-type calcium channels in Purkinje neurons of adult mouse leads to episodic ataxia type 2. Neurobiol Dis 2014; 68:47–56

56 Steckley JL et al., An autosomal dominant disorder with episodic ataxia, vertigo, and tinnitus. Neurology 2001; 57:1499–502

57 Cader MZ et al., A genome-wide screen and linkage mapping for a large pedigree with episodic ataxia. Neurology 2005; 65:156–8

58 Farmer TW, Mustian VM. Vestibulocerebellar ataxia. A newly defined hereditary syndrome with periodic manifestations. Arch Neurol 1963; 8:471–80

59 Damji KF et al., Periodic vestibulocerebellar ataxia, an autosomal dominant ataxia with defective smooth pursuit, is genetically distinct from other autosomal dominant ataxias. Arch Neurol 1996; 53:338–44

60 Escayg A et al., Coding and noncoding variation of the human calcium-channel beta4-subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 2000; 66:1531–9

61 Burgess DL et al., Mutation of the Ca2+ channel beta subunit gene Cchb4 is associated with ataxia and seizures in the lethargic (lh) mouse. Cell 1997; 88:385–92

62 Jen JC et al., Mutation in the glutamate transporter EAAT1 causes episodic ataxia, hemiplegia, and seizures. Neurology 2005; 65:529–34

63 Kawakami H et al., Cloning and expression of a human glutamate transporter. Biochem Biophys Res Commun 1994; 199:171–6

64 Yernool D et al., Structure of a glutamate transporter homologue from Pyrococcus horikoshii. Nature 2004; 431:811–8

65 Winter N et al., A point mutation associated with episodic ataxia 6 increases glutamate transporter anion currents. Brain 2012; 135:3416–25

66 de Vries B et al., Episodic ataxia associated with EAAT1 mutation C186S affecting glutamate reuptake. Arch Neurol 2009; 66:97–101

67 Kerber KA et al., A new episodic ataxia syndrome with linkage to chromosome 19q13. Arch Neurol 2007; 64:749–52

68 Conroy J et al., A novel locus for episodic ataxia:UBR4 the likely candidate. Eur J Hum Genet 2014; 22:505–10

69 van de Leemput J et al., Deletion at ITPR1 underlies ataxia in mice and spinocerebellar ataxia 15 in humans. PLoS Genet 2007; 3:e108

70 Huang L et al., Missense mutations in ITPR1 cause autosomal dominant congenital nonprogressive spinocerebellar ataxia. Orphanet J Rare Dis 2012; 7:67

71 Dudding TE et al., Autosomal dominant congenital non-progressive ataxia overlaps with the SCA15 locus. Neurology 2004; 63:2288–92

72 Julien J et al., Sporadic late onset paroxysmal cerebellar ataxia in four unrelated patients: a new disease? J Neurol 2001; 248:209–14

73 Damak M et al., Late onset hereditary episodic ataxia. J Neurol Neurosurg Psychiatry 2009; 80:566–8

74 Cha YH et al., Episodic vertical oscillopsia with progressive gait ataxia: clinical description of a new episodic syndrome and evidence of linkage to chromosome 13q. J Neurol Neurosurg Psychiatry 2007;


75 Steinlin M. Non-progressive congenital ataxias. Brain Dev 1998; 20:199–208

76 Illarioshkin SN et al., X-linked nonprogressive congenital cerebellar hypoplasia: clinical description and mapping to chromosome Xq. Ann Neurol 1996; 40:75–83

77 Zanni G et al., X-linked congenital ataxia: a new locus maps to Xq25-q27.1. Am J Med Genet A 2008; 146A:593–600

78 Zanni G et al., Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci U S A 2012; 109:14514–9

79 Berridge MJ. Inositol trisphosphate and calcium signalling. Nature 1993; 361:315–25

80 Hirota J et al., Carbonic anhydrase-related protein is a novel binding protein for inositol 1,4,5-trisphosphate receptor type 1. Biochem J 2003; 372:435–41

81 Jen JC et al., Genetic heterogeneity of autosomal dominant nonprogressive congenital ataxia. Neurology 2006; 67:1704–6

82 Klein A et al., Episodic ataxia type 1 with distal weakness: a novel manifestation of a potassium channelopathy. Neuropediatrics 2004; 35:147–9

83 Boel M, Casaer P, Familial periodic ataxia responsive to flunarizine. Neuropediatrics 1988; 19:218–20

84 Ilg W et al., Consensus paper: management of degenerative cerebellar disorders. Cerebellum 2014; 13:248–68

neuro 02|2014

Herausgeber: Österreichische Gesellschaft für Neurologie
Publikationsdatum: 2014-07-17